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Protons: A neurotransmitter in the brain
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PROTONS ARE A POTENTIAL  
NEUROTRANSMITTER 

A chemical may be classified as a neurotransmitter if 
it meets the following criteria [1]: 

1. The chemical is present in the presynaptic cell. 
2.  Stimulation of the cell results in release of the 

chemical.
3.  It is available in sufficient quantity 

in the presynaptic neuron to affect 
the postsynaptic neuron.

4.  There are postsynaptic receptors and the 
chemical is able to bind to them.

5.  A biochemical mechanism for inactivation is 
present.

6.  Exogenous application of the chemical must 
mimic the endogenous response.

7.  Blocking the receptor blocks the activity of 
neurotransmitter. 

Studies raise the possibility that extracellular protons 
might act as a neurotransmitter. #1 is consistent with the 
presence of protons in presynaptic vesicles [2], although 
whether those protons reduce synaptic pH is uncertain. 
#2 and #3 have been tested recently [3]. #4 is consistent 
with the location of the proton receptor acid-sensing ion 
channel 1a (ASIC1a) in postsynaptic spines [4]. #5 is 
consistent with the finding that protons induce transient 
ASIC1a currents [3, 5]. #6 and #7 are supported by our 
previous data that extracellular application of protons 
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induces long-term potentiation (LTP) in wild-type mice, 
and LTP is impaired in ASIC1a-/- mice [3]. However, other 
mechanisms might also alter synaptic pH, including 
neuron and glia metabolism, Na+/H+ exchanger activity, 
Cl-/HCO3

- exchanger activity, lactate production, etc. 
Thus, whether or not protons are a neurotransmitter, 
the data will provide important new insight into how 
alterations in pH control neural function.

SYNAPTIC CLEFT pH SHIFT DURING 
SYNAPTIC TRANSMISSION 

Although overall changes in extracellular pH 
in the brain are tightly balanced by homeostatic 
mechanisms, pH fluctuations in specific micro-
regions, such as the synaptic cleft, may be dramatic 
[2]. Changes in interstitial pH have been shown in 
a variety of preparations. The Chesler lab detected 
pH increases in CA1 hippocampal slices during the 
antidromic stimulation of CA1 neuronal population 
using a concentric pH microelectrode and showed that 
local alkaline transients lasted for seconds [6]. However, 
other experimental paradigms revealed that synchronous 
activation of nerve cells induces a rapid acidification that 
can precede or preclude early alkaline transients [7]. In 
these experiments, it was suggested that the acidified 
synaptic vesicles (pH 5.67) transiently influence local 
extracellular pH upon vesicle release [2]. Consistent with 
this, a rapid, apparent acid transient was recorded with 
the synaptic transmission in hippocampal slices following 
the stimulation of Schaffer collaterals, although a later 
study using a fluorescein-dextran probe to measure pH 
was only able to detect an alkaline shift within the same 
time frame [8]. In strong support of a model where an 
acid transient occurs in the synaptic cleft due to the 
release of protons from synaptic vesicles, a patch clamp 
study showed that vesicular protons feedback to block 
nearby presynaptic pH-sensitive Ca2+ channels [9]. The 
differing observations in these previous studies of how 
pH changes with synaptic transmission are due in part to 
the limitations of previous techniques for measuring pH 
changes that occur in a micro-region and on a rapid time 
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scale. Thus, studies that incorporate new techniques to 
measure local extracellular pH changes during synaptic 
transmission are necessary to address this question. 

BRAIN pH FLUCTUATION AND ITS  
POTENTIAL ROLE IN SYNAPTIC 
TRANSMISSION AND LONG-TERM  
POTENTIATION

There are two major counteracting processes that 
control pH in the brain. Briefly, the aerobic and anaerobic 
utilization of glucose in neuron and glia metabolism 
generates CO2, and/or lactic acid, which results in an acidic 
pH shift. In response to these changes in metabolism, an 
enhancement of neural activity causes an increase in local 
blood flow that facilitates the clearance of CO2, which is 
expired through the respiratory system, leading to local 
alkaline pH shifts. The rapid dynamics of metabolism 
and CO2 clearance suggest that physiological changes in 
brain pH may have significant consequences for behavior, 
learning, and memory [6]. An intriguing idea that has 
emerged from studies of pH-dependent alteration in 
excitability is that highly localized pH transients might 
play a signaling role in neuronal communication. It 
is quite possible that changes in neuronal excitability 
and synaptic plasticity, hitherto solely attributed to 
intracellular Ca2+ transients, may include a significant 
component mediated by pH shift [10], and that protons 
may function as a neurotransmitter to effect these 
changes.

PROTON RECEPTORS: ACID-SENSING 
ION CHANNELS 

Acid-sensing ion channels (ASICs) are members 
of the degenerin/epithelial Na+ channel (DEG/ENaC) 
family. To date, six proteins of the ASIC family have been 
identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and 
ASIC4). ASICs assemble as homo- or hetero-trimers to 
form proton-gated, voltage-insensitive, Na+ and Ca2+ 
permeable channels that are activated by extracellular 
protons [11]. ASIC1a is expressed in many areas in 
the brain, and previous studies in mice showed that 
it contributes to many brain functions and disorders; 
these include hippocampal learning and memory, 
anxiety, depression, stroke, neurodegeneration, seizures, 
Inflammation, and nerve injury [12]. Recent studies 
indicated that ASIC1a is particularly abundant in the 
amygdala and other fear circuit structures and is required 
for normal responses in tests of both conditioned and 
unconditioned fear behavior [13]. Also, some studies 
showed that ASIC1a is located postsynaptically and is 

required for synaptic plasticity [3]. 
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