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The conservation of genotoxic stress-induced morphological 
changes in yeasts

Jia-Ching Shieh

The Conserved PaThways for  
Genome InTeGrITy InduCed by  
GenoToxIC sTress

Genomic stability is vital to sustain cell survival 
and to prevent errors in control of proliferation that 
often result in disease. To maintain genomic stability, 
highly conserved signaling pathways of DNA integrity 
checkpoints are required to ensure the activation of the 
pathways to delay cell cycle progression until DNA repair 
or replication is complete after genotoxic stress that leads 
to DNA damage or replication blocks.

Much of the work that has deciphered the DNA 
integrity checkpoints is from the study of the budding 
yeast Saccharomyces cerevisiae. At least two checkpoints 
are known to operate during S phase in budding 
yeast: a replication checkpoint, originally observed 
after a hydroxyurea (HU)-induced deoxynucleoside 
triphosphate depletion, which blocks the progression 
of S phase in the replicative forks from both early- and 
late-firing origins [1], and an intra–S phase checkpoint, 
which lowers the rate of DNA replication and slows cell 
cycle advance in response to DNA-damaging agents [2, 
3]. Additionally, checkpoints that operate to censor the 
assembly of the mitotic spindle and to control progression 
through mitosis have been discovered [4]. 
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Central to the DNA integrity checkpoints are the 
highly conserved S. cerevisiae PI3K –related protein 
kinases Tel1 and Mec1 (Figure 1), the mammalian 
homologs of ATM and ATR [5, 6]. When DNA damage is 
detected by sensor proteins Mec1 and Tel1, which signal 
through mediator Rad9 to downstream effectors Rad53 
and Chk1 [7] to cause mitotic arrest in the G1 and G2 
phases [8–10], three components of the DNA replication 
machinery—Mrc1, Tof1, and Csm3—operate as the 
replication checkpoint mediators as opposed to Rad9 [8, 
11, 12] (Figure 1). Thus, during normal DNA replication, 
these mediators function differently from when they are 
activated as part of a checkpoint [11–17]. Most recently, 
Ndd1, a new component whose activity is controlled by 
genotoxic stress, has been identified [18–20]. During 
methyl methane sulfonate (MMS)-induced G2/M arrest, 
Ndd1 activity is blocked exclusively in a Mec1-Rad53-
dependent manner. HU induces a cell cycle arrest 
that prevents cell cycle progression into S phase and 
inhibits Ndd1 activity by Mec1-Rad53 through unknown 
mechanisms (Figure 1).

Unlike the fission yeast Schizosaccharomyces pombe 
and higher eukaryotes whose cell cycle progression is 
paused in response to replication stress, principally by 
promoting inhibitory phosphorylation of the cyclin-
dependent kinase (CDKs), S. cerevisiae blocks cell 
cycle progression by directly inhibiting origin firing and 
chromosome segregation [1, 21]

GenoToxIC sTress-InduCed  
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In S. cerevisiae, Cdc28, the mammalian equivalent of 
Cdk1, along with its associated cyclins (Clbs), appears to 
coordinate the cell cycle with bud morphogenesis [22–24]. 
It seems reasonable that the checkpoints of morphogenesis 
and those of DNA integrity are interconnected to allow 
for the tight coordination of cell cycle advancement and 
morphogenesis because the presence of morphogenesis 
checkpoints permits the cell to monitor defects in bud 
morphology, bud formation, septin organization, cell size, 
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and cell wall synthesis, as well as perturbations in the 
actin cytoskeleton [23, 25–28]. 

Swe1, a S. cerevisiae homolog of mammalian and S. 
pombe Wee1, is central to the morphogenesis checkpoints 
[23]. In budding yeast, Swe1 phosphorylates and inhibits 
Clb-bound Cdc28 on the Tyr19 residue [29] (Figure 1), a 
modification that is abolished by Mih1, the mammalian 
and S. pombe Cdc25 homolog [30, 31]. During a normal 
cell cycle, Swe1 accumulates in the S phase, becomes 
serially hyperphosphorylated [32, 33], producing multiple 
isoforms, and undergoes ubiquitin-mediated degradation 
[31, 34–36]. Defects in septin filament assembly at the 
bud neck [32, 37–40], as well as perturbations in the cell 
size, bud formation, and the actin cytoskeleton [23, 25] 
[23, 25], cause hypophosphorylation and stabilization of 
Swe1 and, consequently, the Swe1-dependent inhibition 
of Clb-Cdc28. This Swe1-imposed G2 delay leads to 
elongated cells, as Clb-Cdc28 cannot induce the switch 
from polarized to isotropic growth during budding [23, 
41, 42] (Figure 1). 

Several other Swe1 regulators have also been shown to 
influence morphogenesis. Hsl1, the S. pombe Nim1/Cdr1, 
is a primary negative regulator of Swe1 and is required 
for efficient Swe1 localization at the bud neck [24, 37, 43]. 
UnlikeNim1/Cdr1, which is capable of phosphorylating 
Wee1, Hsl1 is unable to phosphorylate Swe1 [44]. Cla4/
PAK and Cdc5/Polo, which are sequentially targeted 
to the neck of bud, appear to be responsible for the 
stepwise phosphorylation and down-regulation of Swe1 
[45]. Additionally, Hsl1 appears to function in concert 
with Hsl7 [32, 46, 47], as the absence of either Hsl1 or 
Hsl7 radically lowers Swe1 phosphorylation in vivo and 
results in cell elongation. However, the finding that the 
need for the Hsl1-Hsl7 interaction in Swe1 degradation 
can be bypassed by tethering Swe1 to the septins provides 
evidence that Hsl1-Hsl7 has a downstream role involving 
the presentation of Swe1 to other regulators for targeting 
to the degradation pathway [48]. Moreover, Swe1 
degradation is regulated by its interaction with Clb2-
Cdc28, Cdc5/Polo, and Hsl1. Swe1, synthesized during 
the S and G2 phases, binds to Clb2-Cdc28, where it is 
protected from Cdc5-specific phosphorylation. In late 
G2, when the levels of Hsl1 and Cdc5 rise, Hsl1 leads 
to the dissociation of Swe1 from Clb2-Cdc28, enabling 
Cdc5 to phosphorylate Swe1, which leads to its ubiquitin-
mediated degradation [49, 50]. Recently, it has been 
found that feedback between Swe1 and Cdc28 controls 
the Swe1 abundance following stress. Swe1 inhibits 
Cdc28, which in turn antagonizes Swe1 by promoting 
its transcriptional repression and its degradation. In 
cells with mature septin rings, stresses due to osmotic 
shock or actin depolymerization promote the ability of 
Swe1 to inhibit Cdc28 but do not directly stabilize Swe1, 
resulting in subsequent stabilization and accumulation 
of Swe1 via feedback [38] (Figure 1). A positive feedback 
loop in which Swe1 activity inhibits the CDK, which then 
ceases to target Swe1for degradation, is of physiological 
importance.

In S. cerevisiae, various conditions that slow DNA 
synthesis are responsible for the induction of filamentous 
differentiation through Mec1-Rad53-Swe1-Cdc28-
Clb2, as has been demonstrated earlier [51]. Under 
restrictive temperatures, DNA polymerase and DNA 
ligase temperature-sensitive mutants induce filamentous 
growth. In addition to HU, MSS, a DNA-alkylating 
agent that can slow DNA replication fork progression 
[52], and ara-CMP, a potent inhibitor of yeast DNA 
polymerases [53], induce filamentous growth. Since the 
MAPK and cAMP signaling pathways mediate nitrogen 
starvation-induced filamentous growth in S. cerevisiae, 
their possible involvement in genotoxic stress-induced 
filamentous growth has been investigated. As FLO8 
encodes a DNA-binding transcriptional regulator that 
serves as the effector for the cAMP pathway and TEC1 
encodes a DNA binding transcriptional regulator that 
serves as the effector for the MAPK pathway, tec1∆flo8D 
mutant cells defective in both signaling pathways were 
created to examine their responses to genotoxic stress. 
Cells of the tec1∆flo8D mutant respond to genotoxic 
stress with normal filamentous growth [51]. Additionally, 
HU-induced filamentous growth shows dependence on 
Swe1 that is essential for nitrogen starvation-induced 
filamentous growth [51]. Moreover, DNA-damaging 
agents such as bleomycin, etoposide, and H2O2 fail to 
induce filamentous growth despite the fact that the Mec1-
Rad53 DNA integrity checkpoint proteins can also be 
activated by DNA damage via the Rad9-Chk1-dpendent 
DNA damage response checkpoint [51], demonstrating 
that the Rad9-Chk1-dependent DNA checkpoint pathway 
is not required for the Mec1-Rad53-mediated filamentous 
growth. Taken together, DNA replication stress-induced 
filamentous growth, mediated through Mec1-Rad53-
Swe1-Cdc28-Clb2, and nitrogen starvation-induced 
filamentous growth, mediated by the MAPK and cAMP 
signaling pathways, converge at Swe1 (Figure 1).

Figure 1: DNA replication stress-induced checkpoint pathways 
in Saccharomyces cerevisiae. Dotted lines donate minor 
functions. For simplicity, not all minor functions are shown.
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It is of great interest to know if the genotoxic stress-
induced filamentous growth is conserved in other fungi, 
particularly the important opportunistic human fungal 
pathogen Candida albicans [54, 55], whose ability 
to switch between the yeast and filamentous forms 
(pseudohyphae or hyphae) is critical to its virulence 
[56]. Upon response to environmental cues such as 
temperature, serum, and pH, C. albicans can change 
from a yeast (isotropic) form of growth to a filamentous 
(polarized) type growth. Under genotoxic stresses, such as 
HU and MMS, C. albicans can also be triggered to initiate 
polarized growth [57, 58], suggesting a conservation 
between C. albicans and the budding yeast in genotoxic 
stress-induced filamentous growth. Importantly, 
hydrogen peroxide activates hyphal development through 
Rad53 [59], whereas deleting RAD53 abolishes genotoxic 
stress-induced filamentous growth in C. albicans [60]. In 
contrast, inactivation of mitotic recombination proteins 
such as Rad50, Rad51, Rad52, and Mre11 or Cln3, Clb2, 
or Clb4 cyclins stimulates constitutive polarized growth 
in C. albicans [57, 60–64]. This implies that the DNA 
integrity network and cell cycle proteins may represent 
new regulators of filamentous growth in C. albicans . 
Interestingly, through the site-directed mutagenesis of 
Rad53, it was found that the functions of Rad53 in DNA 
repair and replication arrest can be separated from its 
role in genotoxic stress-induced polarized growth in C. 
albicans [58, 60, 65]

It has been known that the Hsl1-Swe1-Cdc28 pathway 
is important for cell elongation of both the yeast and 
hyphal forms and for virulence in C. albicans [66]. 
However, the phosphorylation state of Tyr19 on Cdc28 
between yeast and hyphal cells does not appear to be 
different [67], indicating that Tyr19 phosphorylation 
on Cdc28 may not be important for polarized growth 
in C. albicans and that Swe1, which phosphorylates 
Tyr19 on Cdc28, is not required for hyphal growth. 
Essentially, even though yeast cells lacking SWE1 are 
slightly rounder in shape than wild type cells, they 
form normal pseudohyphae and hyphae [68]. Cell cycle 
delays in response to DNA damage leading to polarized 
growth are partially dependent upon Swe1 [61]. These 
results suggest that genotoxic stress-induced filamentous 
growth is not or is only partially mediated by Swe1, 
unlike the Rad53-Swe1-dependent process observed in 
S. cerevisiae. It will be interesting to see if cells lacking 
SWE1 abolish genotoxic stress-induced filamentous 
growth in C. albicans. Intriguingly, DNA damage-induced 
filamentous growth involves but does not require the 
expression of hyphal-specific genes or the Cph1 and Efg1 
transcription factors, which are downstream targets of 
the MAPK and cAMP signaling pathways, respectively 
[61]. Additionally, cells lacking both CPH1 and EFG1 can 

be induced to filamentous growth in response to HU [69]. 
Particularly, filastatin, a small molecule, has been found 
to block hyphal growth induced by serum, Spider media, 
and GlcNac but not by the genotoxic agent HU [70]. 
Filastatin inhibits the transcriptional activation of HWP1 
[70], which is an early and essential event in the process 
of hyphal development [71]. Taken together, there may be 
a pathway that is dependent on Rad53 but independent 
of Swe1 and the MAPK/cAMP signaling pathways for the 
induction of filamentous growth in C. albicans (Figure 2). 
The rewiring of the genotoxic stress-induced filamentous 
growth pathway may be associated with the interaction of 
C. albicans with its host. Determination of the differences 
between the S. cerevisiae and C. albicans on the control 
of genotoxic stress-induced filamentous growth is 
important and has a potential in therapeutics.

Figure 2: DNA replication stress-induced checkpoint pathways 
in Candida albicans. Broken lines donate functions that are not 
established.Question marks indicate unverified roles.
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